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ABSTRACT 

We calculate heat invariants of arbitrary Riemannian manifolds without 
boundary. Every heat invariant is expressed in terms of powers of the 
Laplacian and the distance function. Our approach is based on a multi- 
dimensional generalization of the Agmon-Kannai method. An applica- 
tion to computation of the Korteweg-de Vries hierarchy is also presented. 

1. I n t r o d u c t i o n  a n d  m a i n  resu l t s  

1.1. HEAT INVARIANTS. Let M be a d-dimensional Riemannian manifold with- 

out boundary with a metric (gij), and A be the Laplace-Beltrami operator (or 

simply the Lap lac ian)  on M. In local coordinates ( x l , . . . ,  Xd) the Laplacian is 

given by 

1 ~ O(x/-~giJ(Of/Oxi)) 
(1.1.1) n f  - x /g  ~,~=1 ox~ ' 

where g =det(gij),  and (gij) denotes the inverse of the matrix (gij). 

The h e a t  ke rne l  K(t,  x, y) is the fundamental solution of the heat equation 
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The function K(t, x, y) is analytic in t > 0 and C ~ in x and y, and has the 

following asymptotic expansion on the diagonal as t -+ 0+ (see [G1]): 

oo 

K(t,x,x) ,'~ E an(x)tn-d/2" 
n=O 

It is called the Minakshisundaram-Pleijel asymptotic expansion (see [MP]). The 

coefficients an(X) are (local) hea t  invar ian ts  of the 'manifold M. They are 

homogeneous polynomials of degree 2n in the derivatives of the Riemannian 

metric {gij} at the point x ([G2]). Integrating an(x) over the manifold one gets 

the coefficients an of the expansion for the trace of the heat operator e-tA: 

(1.1.2) ~ an(x) ex X-" tn-d/2 
i n = 0  n = 0  

Computation of heat invariants is a well-known problem in spectral geometry 

(see [BGM], [Be], [G1], [Ch], [G3], [ao]) which has various applications ([F], 

[P2]). The first method for derivation of heat kernel asymptotics is due to Seeley 

([Se]). This method was developed later by Gilkey (see Theorem 1.3 in [G1]) who 

presented a way to get recursive formulas for the heat invariants.. 

However, explicit formulas for an(x) in arbitrary dimension existed only for 

n _< 5 ([MS], [Sa], [Av], [vdV]). The reason for this is the combinatorial com- 

plexity of an (x) which is increasing very rapidly with the growth of n. For the 

higher heat invariants only partial information is known ([BGO], [�9 Let us 

also mention interesting recursive formulas for an (x) obtained in [Xu]. 

In this paper we represent all heat invariants an (x) of an arbitrary Riemannian 

manifold without boundary in terms of powers of the Laplacian and the distance 

function. This is different from the classical way of expressing heat invariants - -  

using the curvature tensor and its derivatives. Expanding the distance function 

by means of curvatures is a highly non-trivial computational problem (to say 

nothing about applying powers of the Laplacian to this function). We refer to 

[Gra], [GraV] for results on such expansions. 

Let us mention, however, that heat invariants were first given by a recursive 

system of differential equations involving exactly the Laplacian and the distance 

function (see [MP]). 

1.2. MAIN RESULT. Given a point x E M denote by Pz: M --+ R the corre- 

sponding distance function: for every y E M the distance between the points y 

and x is Px(Y). 
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THEOREM 1.2.1: Heat invariants an(x) are equal to 

3n [3n + d~ l Aj+n (Px(Y)21)]y=x 
an(x) (4,)-d/2(--1)  ~ 

~ j + d ] 4Jj!(j + n)i o 

j=O 

The binomial coefficients for d odd are defined by (4.1.2). 

1.1. STRUCTURE OF THE PAPER. In [P1], [P2] we have developed a method for 

computation of heat invariants based on the Agmon-Kannai asymptotic expan- 

sion of resolvent kernels of elliptic operators ([AK]). In [P1] this method is used 

to obtain explicit formulas for the heat invariants of 2-dimensional Riemannian 

mainfolds, and in [P2] for computation of the Korteweg-de Vries (KdV) hier- 

archy via heat kernel coefficients of the 1-dimensional SchrSdinger operator. In 

this paper we present a multi-dimensional generalization of the Agmon-Kannai 

method which is described in section 2.3. In section 3.1 we apply it to get formu- 

las for the heat invariants in normal coordinates. It turns out that combinatorial 

coefficients in these formulas can be substantially simplified, which is done in 

section 4.1. In section 4.2 we present an(x) in a completely invariant form and 

prove Theorem 1.2.1. The main result allows one to simplify the formulas for the 

KdV hierarchy obtained in [P2]. This is shown in sections 5.1 and 5.2. 

2. A s y m p t o t i c s  o f  de r iva t i ve s  of  t h e  r e so lven t  

2.1. A MODIFICATION OF AGMON-KANNAI EXPANSION. The original Agmon- 

Kannai theorem ([AK]) deals with asymptotic behaviour of resolvent kernels 

of elliptic operators. In [P1] we have obtained a concise reformulation of this 

theorem which is suitable for computation of heat invariants. We start with 

some notations. 

Let H be a a self-adjoint elliptic differential operator of order p on a Rieman- 

nian manifold (M, gij) of dimension d < p and let H0 be the operator obtained 

by freezing the coefficients of the principal part H '  of the operator H at some 

point x E M: Ho = H'(x). Denote by R~(x,y) the kernel of the resolvent 

R~ = (U - A) -1, and by F~(x,y) the kernel of F), = (H0 - A) -1. 

THEOREM 2.1.1 ([P1]): The resolvent kernel Rx(x, y) has the following asymp- 

totic representation on the diagonal as A -+ oo: 

1 
(2.1.2) R~(x,x) ~ --~ ~ XmF'~+I(x,x), 

r n  . ~  O 
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where the operators X,n are defined by 

m 

k k 
(2.1.3) Xm = A.~ J ~,k)  0 , m_> 0. 

k = O  

2.2. DERIVATIVES OF THE RESOLVENT. The main obstruction in using Theo- 

rem 2.1.1 directly for computation of heat invariants of a d-dimensional Rieman- 

nian manifold is the condition d < p, where p = 2 is the order of the Laplacian. 

In [P1] we avoid this difficulty for 2-dimensional manifolds taking the difference 

of resolvents. However, in the general case one should consider derivatives of the 

resolvent kernel (cf. [AvB]). 

LEMMA 2.2.1: The following asymptotic expansion on the diagonal holds 

for the derivatives of the resolvent kernel of the Laplacian on a d-dimensional 

Riemannian manifold M: 

dS oo 
(2.2.2) - ~ R A ( x , x )  ~ Z F ( s  + n -  d/2 + 1)an(x)( -A)  d/2-8-n-1, s >_ d/2, 

n----0 

where an(x) are heat invariants of the manifold M.  

Proof: Let Re A < 0. We have (formally) 

fo 1 e-t(A-~)dt  - A - A" 

Differentiating R~ s times with respect to A we get a self-adjoint operator from 

L2(M)  into the Sobolev space H2~+2(M). Since 2s + 2 > d i m M  this operator 

has a continuous kernel (see [AK]). Taking into account (1.1.2) we formally have 

(2.2.3) ~-~s = tSe-t(A-~)dt " an ts+n-d/2eXtdt. 
n = O  

The asymptotic expansion in (2.2.3) is obviously valid if we integrate over a 

finite interval [0, T]. In order to show that it remains true in our case as well we 

need an additional argument. 

Indeed, it is well-known (for example, see [Da]) that 

le - t a  ] _< ct-a/2. 

Therefore we have 

~o~176 tS e-t( A-  ~) dt -- ~O T tS e -t(zx-x) dt E <_ ctS-d/2 eXt dt. 
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Let us estimate the second integral. We have 

t~_d/2e~tdt < e_~r t,_d/2e(~+~)tdt < e_ET F(s - d/2 + 1) 
- - ( I  + e ) " - d / 2 + 1 "  

Take e = V ~ .  Then for T = 1 this is O ( e - V ~ )  and therefore the term 

~ ts-d/2e'Xtdt 

is negligible. This proves the asymptotic expansion in (2.2.3). 

The right-hand side of (2.2.3) is equal to 

~oo ~ F(s + n + l - d/2)a,, an ~ts+n_d/2 e_U d u = 
n=O n=O 

and this completes the proof of the lemma. | 

2.3. AGMON-KANNAI EXPANSION FOR DERIVATIVES OF THE RESOLVENT. In 

the notations of Theorem 2.1.1 let H = A be the Laplacian on a d-dimensional 

Riemannian manifold M, and A0 be the operator obtained from the principal 

part of the Laplacian by freezing its coefficients at a certain point x E M. As 

before R~ = (A - ,~)-1 and F~ = (Ao - A) -1. 

THEOREM 2.3.1: The following asymptotic expansion on the diagonal holds 
for the derivatives of the resolvent kernel of the Laplacian on a d-dimensional 
Riemannian manifold M: 

d s 1 oo 
(2.3.2) d-~ Rx(x,x) ~ - ~  ~=o (m +~n! s)! X~Fm+s+lx , s _> d/2. 

Proof'. Formally we have 

d d (  1 ) 1 - F ~ .  
~X F~' = ~ - X  = ( %  - ~)~ 

This implies 
d s Fm+l - (m+s)lFm+S+l 

Together with (2.1.2) this completes the proof of the theorem. | 

Let us introduce the standard multi-index notations (see [Hb]): if ~ = 

(~ I , . . . , (M)  is a multi-index, then lal = a l  + " "  + (M, a! = a l ! ' " a d ! .  

For any vector x = (Xl,. �9 Xd) we denote x a = Xlal �9 .. x~ ~ and 

0 ~ 0~1 0 ~  

Oz~ Ox~ 1 Oz~ ~ 
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We note that (2.3.2) and (2.1.2) are in fact asymptotic expansions in powers 
of -A  as well as (2.2.2). This is due to the following formula (see [AK]): 

(2.3.3) O'r F'n+s+lfx x~ 
OX.y A ~ ' / 

( A h ( ~ l )  m s 1 ( -1 )  I~1/2 ~'rd~ f 
" ~ J (Ao(~) 2 + 1)re+s+ x' 

R d 

where Ao(~) denotes the symbol of the operator Ao, 7 = (7t , . - - ,7~)  is a multi- 

index and ~ = (~1,. . . ,  ~d). 

3. H e a t  invar ian ts  in n o r m a l  coordinates 

3.1 .  COMPUTATION OF HEAT INVARIANTS. Let ( X l , . . . , X d )  be local coordi- 

nates on the Riemannian manifold M such that the Riemannian metric at the 

origin x = (0 , . . . ,  0) C M (in the sequel we simply write x = 0) is Euclidean: 

g~jlx=o = gij. For convenience we may consider normal coordinates on M cen- 

tered at the point x = 0 (see [GKM]). 

THEOREM 3.1.1: Let M be a d-dimensional Riemannian manifold without 

boundary and (Xl, . . . ,Xd) be normal coordinates on M centered at the point 

x = O. Then the heat invariants an(X) at the point x = 0 are equal to 

(3.1.2) a n ( 0 ) =  

4n rn 1 (2a + 2/3)! Ak(x2~) [z=o 
(4~r)-d/2(-1)" Z ~ k!22m-2n E E a!(aA-/3)!(2/3)! 

rn=n  k = n  l a l = m - k  IBl=k-n 

where c~ = ( o Q , . . . ,  Otd) and/3 = ( / ~ 1 , . . . , / 3 d )  are multi-indices. 

Proof  of Theorem 3.1.1: Since ( X l , . . .  , Xd) are normal coordinates centered 

at x = 0, the principal part of the Laplacian at this point coincides with the 

Euclidean Laplacian, i.e. 

02 02 
(3.1.3) Ao = - Ox---~l . . . . .  Ox----~d . 

Due to (2.2.2), in order to compute the coefficient an(X) we have to collect all 
terms in the expansion (2.3.2) containing (-A) d/2-8-n-1. From (2.3.3) we have 

+ Iv} d 
2 m - s - l = - ~ - s - n - 1 ,  



Vol. 119, 2000 HE AT  INVARIANTS OF  R I E M A N N I A N  M A N I F O L D S  245 

which implies ]7] = 2m - 2n and in particular m _> n. As was shown in [P1], 

estimates on the orders of operators Xm (namely, Lemma 3.1 and Theorem 5.1 

in [AK]) imply that m _< 4n. 

Note that due to (3.1.3) all indices 3'1,...,3'2 should be even since otherwise 

the integral in (2.3.3) will vanish. Setting 3' = 2tt = (2#1, . . . ,  2#4) and taking 
into account that Itt I = m - n we compute this integral (see [GR]): 

f ~2t, d~ = r ( ~ l +  1 ) r ( m  + �89 + �89 + n + 1 - ~) 
(~2 + 1)m+8+1 (m + s)! 

~d 

Substituting this into (2.3.3) and further on into (2.3.2) we obtain, due to (2.2.2): 

a . ( x )  = 

E4n (_l)k+m_ . AkA~ ----~m- (2#)! 
m!(27r)d I~1 

m = n  k=O n i=1 

Note that s has cancelled out, as one would expect since heat invariants do not 

depend on s! 
Now let us simplify this formula. First notice that 

(3.1.4) A ~ - k  = (--1)m-k E ( m - k ) !  02~ 
fl! Ox2~ ' 

If~]=m-k 

where fl = ( i l l , - . . ,  rid). Using the well-known representation of the F-function 

(3.1.5) F(k + 1/2) - Yr~(2k)! 
4kk! 

we also obtain 

(3.1.6) H F # i +  = 
i=1 

Let us substitute (3.1.4) and (3.1.6) into the above formula for the a,~(x) and 
apply A~ -k to x2C Introducing the new summation multi-index a = tt - r and 
noticing that all terms for k < n vanish, we finally obtain 

an(0 )  = 

an m 1 (2~+  2r)! Ak(x:~)lz=0. 
(47r)-d/2(--1)'~ E E  k!22,~-2n E E cd((~+fl)!(2r)! 

m = n k = n  I o t l = m - k  IB [=k -n  

This completes the proof of the theorem. | 
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3.2. Remarks: The proof of Theorem 3.1.1 is similar to the proofs of the main 

theorems in [P1] and [P2]. One may check that in the particular cases of the 

2-dimensional Laplacian and the 1-dimensional SchrSdinger operator, Theorem 

3.1.1 agrees with the results obtained in [P1] and [P2]. 

4. Inva r i ance  a n d  combina to r i a l  ident i t ies  

4.1. COMBINATORIAL IDENTITIES. Let us rewrite (3.1.2) in the following way: 

(47r)-d/2(--4)n• 

Observe that  due to the multinomial theorem 

~. 1 (x 2 +"" + x~)k_n. 
(4.1.1) E x2" - (k - n)~ 

I~l=k-n 

(4.1.4) 

Proof: 

~--~(z+a)(w+u-a) (z+w+u+l) 
a=0 a u - - a  z d - w d - 1  

Using the method of generating functions (see [Rio]) we have 

Z(z+a) 1 q2a _ 

a=O a (1 - q2)Z+l' 

which implies 

( E E (z+al~ w+a2~q2U= 1 
~,=oa:+~== \ a: / a2 / (1 - q2)Z+W+2 

oo (z+w+u+l)  
= E \  z + w + l  q2U. 

u----0 

This completes the proof of the lemma. | 

Now we can prove our main combinatorial identity. 

LEMMA 4 . 1 . 3 :  

Let us recall the following generalization of the binomial coefficients (see [Er]). 

For real z E R and a C N set 

( : ) = ( z ) =  =z ,z l , , zo+l ,  
z -  a F ( a +  1 ) F ( z -  a +  1) a! 

We also set (o) -- (z) = 1. 
Let us proceed with the following simple combinatorial formula. 
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THEOREM 4.1.5:  

Then 

(4.1.6) 
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Let ~ and ~ be multi-indices of dimension d and let [J~l = v. 

(2a+2f l ) !~ !  = 4 ~ ( u + v - l + d / 2 )  
6 

I~l=u 

Proof: We proceed by induction over d. For d = 1 we have, due to (3.1.5), 

(2u+2v)!v' 4~+VF(u+v+l/2)x/~ ( u +  Vu- 1/2 ) 
u!(u + v)!(2v)! = 4VV(v + 1/2)u!v/-~ = 4= 

and hence (4.1.6) is valid. 

Suppose we have proved formula (4.1.6) in all dimensions less than  some d > 1. 

Let us prove it in the dimension d. Denote (~1 = a and ]~1 = b. By induction we 

may rewrite the sum in (4.1.6) as 

( 2 a + 2 f l ) ' ~ '  ~ (2a+2b),b' ( u - a - l + l ) 4 ~ _ a ,  
(4.1.7) E a!(a + ~)!(2~)! = a!(a + b)!(2b)! u - a 

[a[=u a=O 

where l = v - b + (d - 1)/2. On the other hand, 

1 (2a+2b)!b! = ( a + b - i / 2 )  
4 a a!(a + b)!(2b)! a 

and hence (4.1.7) is equal to 

4=~-" (a + b-1 /2)  ( u - a -  l + l). 
a=O a u - a 

By Lemma 4.1.3 this equals 

4 u ( u + b + l - 1 / 2 )  4u( u+v-u l+d /2 ) '  

which completes the proof of the theorem. | 

4.2. Proof of Theorem 1.2.1: Set u = m - k  and v = k-n.  Combining Theorem 

3.1.1, Theorem 4.1.5 and formula (4.1.1) we obtain the following reformulation 

of (3.1.2): 

X--" m + - n -  1 Aa(Ix[2k-2~)l~= 0 
(4.2.1) an(O) 

k=n \m=k k k! 4 k ' 
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where Ixl 2 = x 2 + . . .  + x  2. Denote i = m -  k and j = k -  n. By Lemma4.1.3 

the inner sum may be rewritten as 

i + d / 2 + k - n - i  
i=0 i \ j + d/2 ]" 

Therefore (4.2.1) is equal to 

3n (3n  + d/2  
(4.2.2) a"(O) = (4~r)-e/2(-1)n ~-" \ j + d/2 ] 41j! (j + n)! 

j=O 

Consider the function p~(y)2, which is the square of the distance between the 

points x and y. In normal coordinates centered at the point x = 0 it is given 

locally by 
d 

p~(y)2 _- Z gij(0) yiyj = y2 + . . . +  y2 = ly12 
i,j=l 

where y = (Yl , . . . ,  Yd) (see [Du], p. 94). Therefore we may rewrite formula (4.2.2) 

in an invariant form, namely 

3. (an + d12] A~+n(p:(Y)~J) I , ,= :  
an(x) = (4n ' ) -d/2(-1)n~- ' :~ \ j + d l 2  ] 4 J j ! ( j + , ~ ) !  ' 

j=O 

where the subscript of the Laplacian means that the operator is acting on 

functions in the y-variable. This completes the proof of Theorem 1.2.1. | 

5. Application to computation of the Korteweg-de Vries h i e r a r chy  

5.1. SCHR()DINGER OPERATOR ASYMPTOTICS AND K D V  HIERARCHY. I n  [P2] 

we have applied the Agmon-Kannai method to computation of the Korteweg-de 

Vries hierarchy (see [NMPZ]). Let us briefly recall the setting of the problem. 

Consider the 1-dimensional SchrSdinger operator 

0 2 
L = + U(x). 

Its heat kernel H(t, x, y) is the fundamental solution of the heat equation 
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It has the following asymptotic representation on the diagonal as t ~ 0+: 

o o  

where h,~[U] are some polynomials in U(x) and its derivatives. 
The KdV hierarchy is defined by (see [AvSc]) 

249 

OU 
(5.1.1) --~ - OxGn[U ], 

where 

Gn[V] = (2n)! hn[U], n e N. 
2. n! 

Set U0 = U, Un = OnU/Ox n, n E N, where Un, n >_ 0 are formal variables. The 

sequence of polynomials Gn[V] = Gn[Uo, [/1, U2,...] starts with (see [AvSc]) 

al[V] = Go, a2[v]  = v2 + 3u~, a3[u] = u ,  + lOVoU~ + 5v~ + lOVg,.... 

In particular, substituting G2 [U] into (5.1.1) we obtain the familiar Korteweg-de 

Vries equation (see [NMPZ]) 

OU 03U OU 
_ _ _  + 6U-~-~x. Ot Ox 3 

5.2. COMPUTATION OF THE KDV HIERARCHY. In [P2] we have presented 

explicit formulas for the KdV hierarchy (we refer to [P2] for the history of this 
question). Theorem 1.2.1 allows us to simplify the results of [P2]. 

THEOREM 5.2.1: The K d V  hierarchy is given by 

Gn[U]-  (2n)! + 2 4Jj '  
2- ~. + (j + n)! j=0 2 " 

where the polynomial P,~j [U] is obtained from LJ +n (x2j)lz=o by a formal change 
of variables: Ui(O) -+ U~, i = 0 , . . . ,  2n + 2j - 2. 

This expression can be completely expanded due to a formula for the powers 

of the Schrhdinger operator ([Rid]). 

THEOREM 5.2.2: The polynomials Gn[U], n C N are equal to 

(2n)! ~--~ ( :  + �89 (-1)J(2j) '  J+'~ 
- E Z ok, ..... k, Gn[U] 2 . n! + �89 / 4J j! (j + n)! = 1 

j = O  kl ..... kp 
kl ~-.,.+kp=2(n--p) 
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where 

C ~ l l . , . l k  p ~ -  

Z kl ] \ k2 kp " 
O<_lO <ll  <...<_lp_l = j - b n - p  

21i>_kl-{-...-4-ki_[_l ~ i ~ O , . . , , p - 1 .  

Remark: Theorem 5.2.1 was checked using Mathematica ([Wo D and for 

1 < n < 5 the results agreed with those already known (cf. [GD D. 
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